

TRACKING EVOLUTION OF ELECTRIC VEHICLES AND NEW MOBILITY TECHNOLOGY

YAN (JOANN) ZHOU
Principal Analyst/Group Lead
Argonne National Laboratory

THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY, CONFIDENTIAL, OR OTHERWISE RESTRICTED INFORMATION

OVERVIEW

Timeline	Barriers
 Project start date: 10/01/2019 Project end date: 09/30/2020 Percent complete: 70% 	 Provide quality data and information regarding electrification and new mobility technologies Provide both quick responses to internal and external queries and develop summary reports to VTO
Budget	Partners/Collaborators

RELEVANCE AND OBJECTIVES

To better inform VTO analysis, analysis-supported activities, and associated stakeholders

Objectives: Synthesize and improve upon data for electrification and mobility technologies to evaluate the impacts of these new technologies.

- Monthly E-drive Sales Summary, by make, model and OEM, track technology trends
- Summarize public announcements for electric vehicles, new mobility, and connected and automated vehicle (CAV) technologies in the near-future
- Collect market and usage data of new mobility technologies, such as e-bike, e-scooter, transportation network companies (TNC), and CAV
- Document national-scale impacts of plug-in electric vehicles (PEV)
- Summarize trends in efficiency, features, capabilities, and technologies of electric vehicles from advanced vehicle test data both in-lab and on-road
- Track battery supply-chain

Data time-series back to 1999

ENERGY SYSTEMS DAYSION Light Duty Electric Drive Vehicles Monthly Sales Updates

Topic

- E-drive and Mobility Technologies
- Track E-drive projections
- Track Battery Supplychain
- EV Efficiency Characterization

Method

- Collect sales, stock, efficiency data from databases, literature, news, testing etc.
- Analyze usage characteristics
- Track and summarize market trends and technology evaluation
- Quantify energy/emission impacts at national and regional level

Deliverables

- Monthly E-drive summary (Excel files)
- Argonne webpage
- Public facing reports
- Selected results for Transportation fact of the week
- Presentations to DOE

ACCOMPLISHMENTS: E-DRIVE VEHICLE SALES BY MAKE AND MODEL, AND MARKET TREND

Monthly summary report shared with DOE and public subscribers

Monthly/Quarterly E-drive Summary

- BEV, PHEV, FCEV and HEV
- Monthly and annually E-drive sales by make/model
- Cumulative sales
- Market shares
- Sales shares by OEM
- Sales shares by EPA size class
- Sales weighted efficiency and range
- Sales variation with gasoline price
- Comparison of sales since introduction (of top-selling models)

ACCOMPLISHMENTS: PEV TECHNOLOGY AND MARKET TREND AND RESULTING IMPACT

PEV Assessment Report (Annually published)

Aggregate Impact

- Electric miles traveled
- Gasoline replaced
- Carbon emission reduction
- Electricity consumption

Vehicle Characteristics

- Electric range
- Electric efficiency
- Vehicle manufacturing and assembly
- Vehicle price
- Battery capacity and cathode chemistry

PEV range is increasing and energy efficiency is improving

Gasoline Displacement due to PEVs by Year

Published the impact report in 2019. 2020 report coming soon

ACCOMPLISHMENTS: INSIGHTS FOR VTO IN ELECTRIFICATION EFFICIENCY

Analysis of MY 2012-2020

- Wheel energy vs consumed energy
- City vs Highway Efficiency
- Coefficient of Rolling Resistance vs Aerodynamic forces
- Tracking model changes over time
 - Range vs Battery vs Efficiency

Conclusions

- Extra battery weight increases wheel energy
- Powertrain efficiency suffered in those models that only increased battery size (e.g., i3, not shown in graph)
- Most models increased range improving BOTH efficiency and battery size
- Tesla included many improvements, but most interestingly, switch to AWD
 - Adding PM motor for main drive vs AC ind

COLLABORATION AND PROPOSED RESEARCH

Collaboration

- Argonne conducts all the data collection and analysis
- ORNL provides monthly vehicle sales from Wards' Auto

Proposed Research (Note: Any proposed future work is subject to funding levels)

- Continue the effort collecting available data and information
 - E-drive vehicle sales and new mobility technology trends at the national level
- Quantify national impacts and publish public-facing documents
 - Quantify energy and emissions impacts
 - Document technology evolution trends
 - Annually update the reports
- Quantify regional impacts of electrification: a state by state comparison
 - Difference in PEV models adopted at regional level
 - Energy and emission impacts due to the regional difference

SUMMARY

□ Objectives: synthesize and improve upon data for electrification and mobility technologies to evaluate the impacts of these new technologies.
■ Outcomes: better inform VTO analysis, analysis-supported activities, associated stakeholders and general public.
■ Methods: collects data from different databases, literature, and testing results, and summarize the market and technology trends.
□ Results: documented in the Excel file and public-facing documents for DOE and general subscribers of these monthly and yearly reports.
□ Other Publications: Selected data are published on the Argonne website, and DOE/VTO Transportation facts of the week
☐ Milestones: Successful monthly, quarterly, and annual milestones delivered on-time and within budget – improving over time with more data becomes available

APPROACH – HIGH FIDELITY EV CHARACTERIZATION

Making sense out of "EV Efficiency"

Motivation

- "Efficiency" is nebulously associated with:
 - Chassis efficiency
 - Powertrain efficiency
 - Range achievements
- Public data sources can be used to disentangle vehicle losses from powertrain, efficiency achievements
 - EPA dyno coefficients
 - Sec-by-sec cycle calculations of power
 - Compare different models
 - Track year-by-year model changes

Calculations

For each EV model from 2012 to 2020

- Drive cycle positive wheel energy / distance
 Vehicle Chassis Demand
- Drive cycle positive wheel energy / AC Wh consumed = Powertrain "Efficiency"
- Infer rolling resistance
- Vehicle driving force (at highway speed)
- (future) Usable vs quoted battery energy
- (future) Charger efficiency, which contributes to "Powertrain Efficiency"

ACCOMPLISHMENTS: PROJECTIONS OF THE U.S. PEV MARKET SHARE VARY FROM 3% TO 40% IN 2030

Most studies project more BEV than PHEV in the future

ACCOMPLISHMENTS: TOTAL TRIPS AND TRIP CHARACTERISTICS BY MICRO-MOBILITY

In 2018, total 84 millions trips in the U.S.

- 36.5 million trips on station-based bike
- 38.5 million trips on shared e-scooters
- 6.5 million trips on E-bikes (6 million on dockless and 500,000 on station-based systems).
- Cumulatively, 207 million trips have been taken on shared bikes and e-scooters

Annual Total Trips Traveled Scooter share 84 M Dockless bike share Dockless bike Station-based bike share share trips: Total Trips Taken in Millions 6.5 M Station-based 35 M bike share trips: 28 M 36.5 M 22 M 20 4.5 M 10 321 K 2010 2011 2012 2013 2014 2015 2016 2017 2018

Average trip distance and time (from several cities)

Scooter: 1-1.5 miles

Station-based bike: 1- 3 miles

Dockless E-bike: 1-2 miles

Travel time varies by mode: 10-25 minutes

Trip distance by shared mode (Washington D.C. as an example)

ACCOMPLISHMENTS: E-SCOOTER BATTERY RANGE AND FUTURE DEMAND

36-Volt scooters dominate electric scooters market

■ The global market can be categorized by voltage into 24V, 36V, 48V, and > 48V.

■ The demand for 48V batteries is increasing since consumers prefer scooters with a long

battery range

References:

https://www.grandviewresearch.com/industry-analysis/electric-scooters-market https://electrek.co/2018/10/26/buying-an-electric-scooter/ https://venturebeat.com/2019/05/08/birds-1299-bird-one-scooter-can-travel-30-

miles-on-a-charge/

ACCOMPLISHMENTS: TRACK E-DRIVE VEHICLE SALES, SUMMARIZE MARKET AND TECHNOLOGY TREND

PEV Sales Shares by OEM (2010-2019)

CRITICAL ASSUMPTIONS AND ISSUES

- Government agencies or companies from which ANL collects data are improving their data collection and data processing methodologies. But those improvements can cause incompatibility with previous years' data and cause a significant disruption to a historical time series of data.
- Rely on available travel survey information to derive annual vehicle miles traveled and PHEV utility factors when quantifying the gasoline and electricity consumption
- Large EPA vehicle testing databases have some errors so checking and filtering is required.
- EPA full test reports were designed for gasoline vehicles, EV reports are not as complete

PUBLICATIONS

- Gohlke, D. and Y. Zhou. Assessment of Light-Duty Plug-In Electric Vehicles in the United States, 2010–2019. Argonne National Laboratory, 2020, draft submitted to HQ.
- Argonne National Laboratory, <u>Light-Duty Electric Drive Vehicles Monthly Sales Update Program</u>, https://www.anl.gov/es/light-duty-electric-drive-vehicles-monthly-sales-updates
- Transportation FOTW #1128, April 6, 2020: Innovations in Automotive Battery Cell Composition,
 https://www.energy.gov/eere/vehicles/articles/fotw-1128-april-6-2020-innovations-automotive-battery-cell-composition
- FOTW #1124, March 9, 2020: U.S. All-Electric Vehicle Sales Level Off in 2019
 https://www.energy.gov/eere/vehicles/articles/fotw-1124-march-9-2020-us-all-electric-vehicle-sales-level-2019
- FOTW #1106, November 4, 2019: In the Last Two Months of 2018, U.S. Monthly Sales of All-Electric Vehicles Outpaced Both Plug-in Hybrids and Conventional Hybrids, https://www.energy.gov/eere/vehicles/articles/fotw-1106-november-4-2019-last-two-months-2018-us-monthly-sales-all-electric
- FOTW #1086, June 17, 2019: Seventy-five Percent of Plug-in Vehicles Sold in the United States in 2018 Were Made in the United States, https://www.energy.gov/eere/vehicles/articles/fotw-1086-june-17-2019-seventy-five-percent-plug-vehicles-sold-united-states
- FOTW #1080, May 6, 2019: U.S. Plug-in Vehicles Consumed Nearly Three Terawatt-hours of Electricity in 2018, https://www.energy.gov/eere/vehicles/articles/fotw-1080-may-6-2019-us-plug-vehicles-consumed-nearly-three-terawatt-hours

